Online only Supplementary Figure

The crucial relationship between miRNA-27 and CSE/H₂S, and the mechanism of action of GLP-1 in myocardial hypertrophy

Shan Gao¹, Ying Li¹, Mei-ming Liu¹, Xue Xiong¹, Chang-peng Cui¹, Qing-ji Huo¹, Ke-xin Li¹, Xun Sun¹, Rong Zhang¹, Di Wu^{1, 3*}, Bai-yan Li^{1,2 *}

¹ State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.

²Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.

³Department of Pharmacy, the 2nd Affiliated Hospital of Dalian Medical University, Dalian 116023, China

Supplemental Figure

S1. Validation of myocardial hypertrophy models in vitro and in vivo.

(A-E). Statistical results of interventricular septal thickness in diastole (IVSd, mm) and systole (IVSs, mm) left ventricular posterior wall at end-diastole (LVPWd, mm) and end-systole (LVPWs, mm), and heart/body weight (mg/g) in Sham and TAC group (n = 6-10 mice). Changes of mRNA (F) and protein (G, H) levels of cardiac hypertrophy markers, including ANP, BNP, β -MHC, in TAC mice compared with Sham group (n = 5 mice). β -tubulin served as an internal control (n = 5-6 mice or group). qRT-PCR and Western blot were used to detect the changes of mRNA (I) and protein (J-L) of hypertrophic

markers in neonatal mouse ventricular cardiomyocytes (NMVCs) after 48 hours of Ang II treatment (n = 5 group). Averaged data are presented as the mean \pm SD; *P < 0.05, **P < 0.01.

